Investigating gated recurrent neural networks for speech synthesis

نویسندگان

  • Zhizheng Wu
  • Simon King
چکیده

Recently, recurrent neural networks (RNNs) as powerful sequence models have re-emerged as a potential acoustic model for statistical parametric speech synthesis (SPSS). The long short-term memory (LSTM) architecture is particularly attractive because it addresses the vanishing gradient problem in standard RNNs, making them easier to train. Although recent studies have demonstrated that LSTMs can achieve significantly better performance on SPSS than deep feedforward neural networks, little is known about why. Here we attempt to answer two questions: a) why do LSTMs work well as a sequence model for SPSS; b) which component (e.g., input gate, output gate, forget gate) is most important. We present a visual analysis alongside a series of experiments, resulting in a proposal for a simplified architecture. The simplified architecture has significantly fewer parameters than an LSTM, thus reducing generation complexity considerably without degrading quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence Modeling using Gated Recurrent Neural Networks

In this paper, we have used Recurrent Neural Networks to capture and model human motion data and generate motions by prediction of the next immediate data point at each time-step. Our RNN is armed with recently proposed Gated Recurrent Units which has shown promissing results in some sequence modeling problems such as Machine Translation and Speech Synthesis. We demonstrate that this model is a...

متن کامل

Acoustic Modeling Using Bidirectional Gated Recurrent Convolutional Units

Convolutional and bidirectional recurrent neural networks have achieved considerable performance gains as acoustic models in automatic speech recognition in recent years. Latest architectures unify long short-term memory, gated recurrent unit and convolutional neural networks by stacking these different neural network types on each other, and providing short and long-term features to different ...

متن کامل

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments...

متن کامل

From Nodes to Networks: Evolving Recurrent Neural Networks

Gated recurrent networks such as those composed of Long ShortTerm Memory (LSTM) nodes have recently been used to improve state of the art in many sequential processing tasks such as speech recognition andmachine translation. However, the basic structure of the LSTM node is essentially the same as when it was first conceived 25 years ago. Recently, evolutionary and reinforcement learning mechani...

متن کامل

Improving Speech Recognition by Revising Gated Recurrent Units

Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.02539  شماره 

صفحات  -

تاریخ انتشار 2016